Some recent projects include:
Collaborating with Panthera.Org, I am evaluating range-wide habitat connectivity of the Jaguar and developing new methods to quantify dispersal capacity of landscape using a maximum flow approach. I am extending this approach to include multispecies optimization approaches to habitat-base conservation planning.
"The Physiological Genomics of Panicum: Exploring switchgrass responses to climate change" (NSF funded). In collaboration with plant geneticists and experimentalists we are combining landscape ecological, experimental and genomic approaches to understand the genetic basis of phenotypic responses to environmental stress. My lab is pursing novel statistical techniques to identify signatures of local adaptation in genomic data. We are building models to evaluate future biomass production potential under climate change scenarios. A key question is the tradeoffs among biofuel production, food production and biodiversity conservation.
"Genetic connectivity and evolution of resiliency to stress in Micronesian corals" (NOAA funded). In collaboration with marine biologists, we are using molecular methods to map population connectivity among Micronesian coral atolls.
"Incorporating physiological variation in mechanistic range models for ecological forecasting" (NSF funded). We are using advanced biophysical models, parametrized with field and laboratory data, to forecast Sceloporus lizard reponses to climate change.